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ABSTRACT
Many problems in biological information processing require the solution to a complex system of
equations in many unknown variables. Ar, equation-counting procedure is described for determining
whether such a system of equations will indeed have a unique solution, and under what conditions
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1. Introduction

Sensory data are routinely interpreted as external events by biological systems. This achievement
is the classical problem of perception: given a pattern of sensory activity, what are the external
events that caused this activity? In order for an organism to survive, such assignments of cause, or
interpretations, must be reliable and appropriate. Yet the sensory data by themselves are ambiguous
(as illustrated by the projection of the three-dimensional world onto our two-dimensional retina). The
appropriate interpretation or a pattern of activity is thus just one of many possibilities. The objective
of this paper is to outline the power and pitfalls of an equation-counting procedure, and how this
procedure can lend insight into the interpretation process.

The ambiguity of the sensory activity becomes very clear when formal relations are developed
between these sense data (the givens or "knowns") and the external events (or "unknowns") that
generate the data (Marr, 1976, 1982; Ullman, 1979). When such relations are expressed in the form
of equations relating the "knowns" to the "unknowns". then the number of unknowns will almost
always exceed the number of equations. The incompleteness of the set of equations is a consequence
of the fact that the mapping of a world event into the sensor entails a loss of information and hence is
usually many-to-one. But if the system of equations is incomplete, with the number of equations less
than the number of unknowns, then the system cannot be solved uniquely and constructing a unique
description of the external event becomes impossible.

Fortunately, events in the real world are not arbitrary, but are constrained by natural laws. The
sense data reflect these constraints (Huffman, 1971; Clowes, 1971; Waltz, 1975). Once discovered,
these additional relationships can yield the remaining equations needed to make the number of equa-
tions equal to the number of unknowns. A unique solution to the set of equations may then be sought,
permitting an interpretation of the data. (The correctness or validity of the interpretation will be
discussed later.)

The paper begins with a rather simple example of "equation-counting," namely, the detection
of a narrow-band signal in noise. This problem involves only linear equations, but still illustrates
the general features of the approach and raises three issues: 1) independence of the equations; 2)
constraints needed to yield a unique solution, and 3) whether this unique solution is indeed "correct".
We then introduce a theorem by Bezout which is needed to place bounds on the number of possible
solutions to polynomial equations, as well as a Jacobian test for the independence of these equations.
Finally, two other problem examples are given to illustrate further details. One example concerns
recovering structure from visual motion; the other shows why three spectral samples are needed to
distinguish shadows from reflectance changes.
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Flpre 1. An iluhotion of a narrow band si against a a backgpound of noise. The noise is broadband
with a constant time averaed qecnm.

2. A Classic Problem

A problem faced by many animals is the need to isolate a narrow-band, species-specific signal
from the background noise. Although examples may be found in every sense modality, the clearest
probably occur in audition. Consider the bird listening to the call of its mate in the forest of other
sounds; the dog perking his cars at his master's whistle: or the moth's task of isolating the cry of the
bat as it homes in for its next meal. In each case, the signal is confined to a relatively narrow band, as
illustrated in Figure 1, whereas the competing noise is much broader. Given that the frequency band
of the signal is known (as it would be for the bird or the moth), how many intensity samples must be
taken to isolate the signal from the noise?

Clearly, by referring to Figure 1, we see that sampling in the signal-band at frequcncy 1 will not
allow us to isolate the signal. More formally, the ear will receive intensity I, at frequency A equal to
the sum of the power produced by each source:

(f,) = S(A) + N() (I)

where S corresponds to the power of the narrow-band signal at If and N is the hackground noise at
the same frequency. Since only I is available to the listener, S and N cannot he separated," for we

I
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have only one equation in two unknowns, S and N. More generally, If we allow additional samples at
time Intervals ti, then equation (1) can be generalized to:

IM t) - Sfj £3 + NV j, 9A (2)

Thus, for T time samples we will obtain T equations in 2T unknowns, which will not permit a unique
solution fbr S.

Let us now make the obvious next step and consider frequency samples outside the signal band.
The frequency A in equation (2) then becomes indexed to f.. However, since the signal is zero outside
the band at A, then S(Ji, 4j) = 0 for i 7 1. These conditions may be expressed as two equations:

I(A, tj) = S(J, tj) + N(A, t,) (3a)

SA, ti) = 0, (i 7 1) (3b)

Letting F and T be the number of frequency and time samples, respectively, there will be a total of
F -T equations of form (3a) and (F - 1) T equations of form (3b). The total number of equations
is thus 2 FT - T. Similarly, the total number of unknowns will be F. T for S and F. T for N or
2. F T. In order to solve uniquely for S, the minimum condition is that the number of equations E
equal (or exceed) the number of unknowns U:

E > U (4)

For solution, equations (3ab) thus must pass We following inequality test:

2FT- T > 2FT(5)

or

0>T

which fails since T > 1. Thus a narrow-band signal cannot be extracted from the broad-band noise
without specifying further constraints upon either the signal or the noise.

UI Flat Noise Condition

Very often noise i% relatively constant over frequency (or time), for example, the hum of an air
conditincr a ieady wind flow passing the body, or c cn body noise. Ibis comtdifiiIn C anl be exprcscd
by the following relation:
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N(V, tj) N(h, ti) (6)

where i 3 I and f, serves as the reference frequency. We now see that for a total of F frequency
samples, equation (6) adds (F - I). T equations but no more unknowns. Applying the Inequality
Test (4), we now find:

(2FT - T) + T(F - 1) >2FT (7)

or

F.T>2T

or

F_2 ()

Thus, the minimum condition for a unique solution occurs for two frequency samples at any
temporal interval. Ignoring the time variable, equations (3a, b), and (6) then become

JI) = S() + N(A) (9)

'(f2) = S(f2 ) + N(,)

sVf2) - 0

N() = N2)

We now have four equations in four unknowns, which allows us to solve for S(f1 ), given that the
noise spectrum is flaL

2.2 Independence and Uniqueness

Although two frequency samples plus the constraint of "flat noise" yield the same number of
equations as unknowns, these equations must be shown to be independent. Certainly we can reduce
equations (9) to obtain an explicit solution for S(fA), thereby demonstrating independence. However
in the more complex cases nonnally encountered, such a reduction is often difficult or may be imnpos-
sihlc (for example if fifth degree polynomials arc im'ohed). We therefirc seek a niorc general tcst for
independence.

- ~-e~w~fr'."w-~-~. - - -
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In the above example, the obvious test is to recast equations (9) so all the unknowns are on the right
hand side (R.H.S.) of the equality, and all the knowns are in the L.H.S. Then the determinant of the
coefficients of the R.H.S. can be calculated. By "Cramer's Rule", we know that if this determinant
is not zero, then the equations have a unique solution (Thomas, 1951). To proceed, equations (9)
are rearranged so the unknowns are ordered in the sequence S(V), N(fj), 5({2), N( 2 ) and are each
aligned in their separate columns on the R.H.S. of the equality. Since there are four unknowns and
four equations, the matrix of the coefficients of the unknowns will be as follows:

I 1 0 0
0011 (10)

0 -1 0 1

The determinant of this matrix is easily found to be 1 (i.e., it has maximum rank), and hence the set
of equations (9) must have a unique solution.

We now can proceed with confidence to find the following solution for S(fA):

S(V) = I(A) - 1(h) (11)

2.3 Corroboration and Constraint

Unfortunately, any pair of sensory intensities () and '(f2) will provide a value for S(fj). How do
we know, therefore, that the obtained value for S(f1 ) is indeed correct? Clearly if the noise stimulus
is not flat over frequency, but varies as shown in Fig. 1. then the solution for S(A) will be wrong
because the assumed condition does not apply. Without some evidence supporting the "flat noise"
assumption, a meaningful interpretation of the intensity values J(fi), IV) cannot be made.

Ideally, any assumed condition, such as the flat noise condition, that is introduced to match the
number of equations to the unknowns should be a regularity in the world or a "law" that is never (or
rarely) broken by nature. Such conditions arc difficult to discover, but when found and introduced
into the system of equations provide powerful constraints on the solutions. Often the contraint may be
a statistical regularity (Witkin, 1980; Pentland, 1980). Poor choices for constraints are those conditions
that are very narrow and restrictive and which do not capture a very general property of the world.

In the case of detecting a narrow-band signal in "flat-noise", the imposed condition is very restric-
tive. However. some attempt can be made to verify the validity of invoking this condition. For
example, one possibility might be to examine other frequencies to see if the relation N(f1 ) = N(f,)
holds for a range of frequencies ouLside the signal band. (Note that the solution for S(.f) should
also hold.) If so, then the chance that the "flat-noise" condition is invalid is reduced, although the
uncertainty is never eliminated. Sampling at additional frequencies thus provides some (weak) cor-
nrboration for the interpretation, increaing ils likelihood. (In fact, the condition assmned here has
merel. been rcpl;c:cd b another. less reslricti e assun ption alout the slu|iuthcss of wail efoirni s
Strongcr forms of corroboration % ill be discussed in later sections.
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Finally, it should be noted that in cases where the imposed conditions are not verifiable, the ap-
propriateness of the condition can often be rejected quite easily. For example, if S(fl) is found to be
negative, then since negative signals are not physically realizable, the assumption must not be valid.
This strategy of rejecting certain conditions or possible states of the environment has been found
useful elsewhere (Rubin and Richards, 1981).

3. Non-Linear (Polynomial) Equations
3.1 Bezout's Theorem

In the above example, all of the equations were linear, and simple techniques of linear algebra
could be used. What if one or more of the equations were quadratic or a still higher degree polyno-
mial? In such cases, which are quite common, each nth order polynomial will at most have n distinct
roots. How many possible solutions will there be if there are M polynomial equations of degree N?
Can we even guarantee that there will in fact be a finite set of solutions? If this cannot be guaranteed,

then the test that states the number of equations E should at least equal the number of unknowns U
is not useful, and the simple equation-counting procedure collapses at the onset Fortunately, Bezout's
Theorem tells us under what conditions a finite set of solutions can be found to N equations in N
unknowns, and just what the maximum number of solutions will be (Van der Waerden, 1940).

Theorem (Bezout): A set of N independent polynomial equations in N variables will have a
maximum number of generic solutions equal to the product of the degrees of the equations.1

The above theorem is critical for our procedure because it states that if the relations among the N
variables can be cast as N independent polynomial equations (perhaps by a change in the form of the
varables), then there will be a finite set of isolated solution points. Furthermore, this set will include
all the possible solutions. (See Appendix 11 for a brief discussion of a generalization of Bezout's
Theorem by Sard to include any set of smooth functions on manifolds.) For linear equations, it is
clear that the product of the degrees of the equations will always be one, and only one solution set will
be found. For third order equations, which may include terms such as X -/" z, or Y 2. z, the number
of possible N-tuples of variables that satisfy the N equations can be quite high. Among these is the
physically meaningful solution that we seek, provided our hypotheses are correct.

3.2 The Jacobian Test

lkzout's Thlleorem states that in principle, N polynomial equations or any degree can provide a
solution to N unknowns, if the cquntiols are Independent. In our simple first example, the deter-

Illy a peneric snluuion, we mean that a .,liplhi pcflurbaimn i)a Ib3 aluc of ihc \nriablc% will not alicr the solutlon

alppreciahly (I-. wouhl In, the Case if ili, mutiOII ucic the 4ittiml cawe of Imo itcle j i vra/inv tuich othoi rather han
inwrscrlins, for example).

, . . .... -. . ., _.- " . -+ . ++...+
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minant of the mutrix of coefficients of the unknowns was used to check for independence. More
generally, th Jacoblan of the set of equations should be evaluated (Kendlg. 1977; Guillemin and
Pollack, 1974). The Jacobian b fbrmed by taking all N partial derivatives of each of the N equations
(Ofi/t/z, Oh/ . B/nr, , and placing these partial derivatives In an N X N matrix, where
the columns represent each unknown and the rows correspond to the equations. Clearly, for linear
equations, the Jacobian is simply the matrix of the coefficients of the unknowns of each equation.

Jacobian Test (for Independence): If the determinant of the Jacobian of the system of N equations
in N unknowns is non-zero, then a countable set of isolated solution points can be found.

This test is simply an application of the Inverse Function Theorem, which gives a condition for a
one-to-one and onto mapping between real variables. Note that if the determinant of the Jacobian
collapses to zero (by a loss of rank), then this is not a proof that solution points cannot be found. The
Jacobian test is therefore a test for sufficiency, not necessity.

3.3 Summary of Procedure

To apply the "equation counting" method to the recovery of event descriptions from limited sen-
sory data, we therefore proceed as follows:

1. Set up polynomial equations describing the mapping of the external (unknown) variables into
the (known) sense data.

2. Embody as many constraints as necessary in the form of additional polynomial equations relating
the variables in order that the total number of equations equals the number of unknowns that are to
be recovered. Whenever possible, choose "constraints" that can be verified from the data. Those that
capture a regular or consistent property of the world are the best choice.

3. Apply the Jacobian test to demonstrate that the equations are independent. Bezout's Theorem
then guarantees that there will be a finite number of solution points. If the Jacobian test fails, try to
discover new constraints, (See also Section 5.6.)

4. Proceed to solve for the variables of intercst. (We know of no simple heuristics for this step.)

5. Demonstrate that all constraints and conditions are valid. Usually this will involve taking an
extra, independent measurement and verifying that the same solution is obtained. Some care must be
taken with this step, however, as will be seen in the examples to follow.

6. °be sense data may now be given a preliminary interpretation. However. a final interpretation
should await two further tests to be describcd subsequently. One is the exclusion of competing inter-
pretalions, the other is corrolration. using an independent system of equations. (See Sections 6.0 and
6.1.)
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4. Two Examples

4.1 Example 1: Recovering Structure from Motion

The difference in visual impressions between a static scene and a dynamic movie is often quite
striking. Somehow the motion created by viewing a rapid sequence of frames will transform an am-
biguous 2-D shape into a vivid 3-D structure. Perhaps the most common example of this phenomenon
occurs when we walk, run, or drive and immediately know the spatial configuration of the objects
about us, regardless whether we use two eyes or one. Although Ullman (1979) has shown how the
spatial relations may be recovered using motion information in the general case, we wish to consider
a simpler version of the same problem that has a more compact solution: namely, given a person in
locomotion, how can he recover the orientation of the surface on which he walks?

Let the surface be covered with markings, or for convenience, let a short "stick" lie on the surface
patch of particular interest. Then if the observer looks at the center of the "stick" as he moves ahead,
the image of the "stick" as seen on his retina will rotate and change length as shown in frames Fl. F2,
and F3 of Fig. 2. Because the stick lies in a plane of fixed orientation relative to the moving observer,
the orientation of the surface patch can be specified by the axis of rotation of the "stick". The problem
then is equivalent to recovering the axis of rotation of a rotating rod seen by a stationary observer.

Figure 2 illustrates the general form of this common problem. The "stick" or rod is rotating in
3-space and is projected onto a single 2-D retina. Let each of these retinal images be discrete time
samples or frames as in a TV. Given only the three (or more) ambiguous 2-D image frames Fl, F2,
F3, how can the axis of rotation of the rod be recovered? This is a task that is solved easily by the
human observer, although no information other than the 2-D motion of the end points of the rod is
available (Johansson, 1975).

The inset to Figure 2 shows the actual three-dimensional relation between the viewer, the rotating
rod, and the axis about which the rod is spinning. Note that the axis of rotation (which defines the
surface plane) can be any stationary vector and need not be vertical nor parallel to the xz image
plane. The problem is to recover the correct axis of rotation (as well as the length of the rod).

4.2 Rigid Rod and Rotation in a Plane (P)

Let the coordinate system be centered at the projection of the midpoint of the rod. Then since the
distance OA = OA', we need consider the motion of OA only. Let the three-dimensional coordinates
ofendA be (zl, yl. zI) for frame l and (mi. y,, z,) for frame i. Then since the "stick" is a rigid rod, we
have the constraint that the rod length remains constant for any frame:

X? +Y? +X, +Y, +(13)

For N frames, the relation (13) will yield (N - 1) equations, each in two unknowns, z, and z,
(since zi, yj are obscrvables in the image planc). So far wc thus have (N - 1) equations in N
unknowns.
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AXIS OF ROTATION
ye,,, y z)

/ - - AA

V V I/
-' A IMAGE" PLANE

F1 X F2

VIEWER

F2 X

F3 X

Fipre 2. A simple rod rotating in three space about its midpoint.

To embody the condition of rotation about a fixed axis; we note that the angle 0 between OA and
its axis must remain constant. This can bc expresscd by forming the dot product between the rod
segment OA with the presumed axis of rotation, N:

OA, N = cosO (14a)

where the subicriptcd OA indicates the 2-1) projection of the 3-I) length CA (ont the i-th frame.
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Letting the end position of the unit axial vector N have the coordinates zo, It, ib, equation (14a)
reduces to

zi . zo -+ y " o + z. .jaj = kcoaf (14b)

wherek = (z? + I? +z?)1/2.

But rotation in a plane requires that the angle 0 between the axis N and OA be v/2. Hence, cos
G = 0 and the value of k is irrelevant. For N frames, relation (14b) thus gives us N equations in
three more unknowns: z, &t. 2. However, because the length of the rotation axis is irrelevant also, N
can be taken as the unit vector and we obtain the additional equation

_0 + y + Z=1 (14c)

Altogether, we thus have (N - 1) + N + I equations (E) in N + 3 unknowns (U): z'. zo, M,
zo. (Note that all of these equations are polynomials.) The minimum number of equations can then be
determined from the relationE > U:

2N N + 3 (15)

or

N > 3

4.3 The Jacohian Test

The next step is to demonstrate that the equations (13) and (14) form a set of independent equa-
tions. We thus examine the Jacobian for N = 3 to see if its rank is maintained. Recalling that zi, yij
for i 3 0 are given in the image plane, the partial derivatives of zi in equation (13) for i = 2, 3 yield
the first two rows of the following matrix, while the remaining rows come from from equations (14b)
and (14c) respectively:

2z, -2i 0 0 0 0
2z, 0 -23 0 0 0
ao 0 0 z i Zt
0 Ao 0 X2 It M2
0 0 , 0 3 / 13

0 0 0 2x0 2Lto 2ai

Evaluation of the determinant by MACSYMA shows that it is generally non-zcro. However, certain
relations between the variables nay catise the Jacobiam to drop rank. Some of these failure conditions

can be noted by factoring the detemiinant. (Note that such failure conditions provide instances where
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any perceptual system that interprets data in accord with the system of equations should also fail. The
factors thus provide example experiments for "insmnt psychophysics".)

4.4 Bezout's Theorem and Uniqueness

Although the set of equations (13) and (14) are shown to be "independent" by the Jacobian test,
Bezout's Theorem tells us that we may have up to 2 - 64 possible solutions. (This is the product of
the degrees of the six equations). Which of these solutions do we pick?

Fortunately, it can be shown by algebraic reduction of the six equations that of these 64 possible
solutions, only two have real values-and one of these is simply a "reflection" of the other about the
image plane (Hoffman and Flinchbaugh, 1981), Thus. three snapshots or "frames" showing the z, y
positions of the end points of a rotating rod are sufficient to solve for the rod length and its axis. (The
reflection causes an ambiguity only in the direction of motion and orientation of the rod.) But since
any triplet of z, y positions will yield a solution, how do we know that the measurements were taken
from a rotating rod and not from a random set of points? Clearly additional tests must be performed
before any meaningful interpretation can be given to the data.

4.5 Corroboration

In addition to the problem of isolating a unique solution point, it is also necessary to show that the
"unique" solution is indeed plausible. (If the unique solution is not physically realizable, it can be
rejected immediately.) In the case of the rod rotating in a plane about a fixed axis, three frames (or
snapshots) were sufficient to solve the six polynomial equations and to obtain a unique solution for
the rod's lengh and its axis of rotation. However, are we guaranteed that no other set of conditions
could generate the data? Clearly not, for if the simple zd rotation is simulated in the laboratory on
a TV monitor, then one obvious interpretation is that there are two points moving on the face of the
TV. (In fact, if reflections appear on the screen so that strong 3-D cues are present, then the illusion of
a rod rotating in 3-D is lost.)

Before a final interpretation should be made, it is therefore prudent to corroborate the solution
to increase the probability for a correct interpretation. This can be accomplished by analyzing an
independent set of data or hypotheses that are based on entirely distinct physical constraints. (In
the case of structure from motion, stereopsis may be used.) Without such corroboration. the human
observer seems to accept the interpretation that is most favored by the real-world statistics,3

2 ln the event that algebraic reduction is not possible, then the uniqueness of a solution can be tested by generating

data from several known, but arbitrary configurations, and by numerical evaluation dctermine if the correct solution is
obtained (Ullman, personal communication). Numerical evaluation is recommended in any case as a further check for
the isolation of solution point&

'In d, rmtaing rod cac where the .i rrn or reflcctions aic no( -iisible. then becae,:c there is tin ronral) 3-1) infrnwtioi.
the 3-1) interpretation will be accepted as most likely.
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S. Hidden Dependencies

Quite often when the equation-counting methbd is used, the constraint equations contain hidden
dependencies that cause the Jacobian to drop rank and its determinant to equal zero. There are two
general procedures for handling this situation so that an interpretation of the data can be made. The
first is simply to introduce another independent constraint, the second is to identify the dependency
and to reduce the number of physical variables accordingly. The disambiguation of shadows and
highlights illustrates these two methods.

5.1 Example 2: Interpreting Shadows and Highlights

Consider the very common situation in vision when two patches of surface A and B appear
superficially different. Do A and B differ because they have different reflectances, or is one of the
regions a highlight or a shadow on a surface of uniform reflectance? These two interpretations are
different, since when B is a shadowed region, the implication is that there is an object occluding the
direct light of the source, whereas in the highlight case, the difference between A and B is due to
the specular properties of the surface and there is no cast shadow.4 (If the darker region around the
highlight were to be regarded as shadowed, then 99 per cent of the world would be interpreted as
lying in shadel)

As shown in Figure 3. let the observer view the surface from above, and let the surface be il-
luminated with at least two sources of illumination-one producing direct light, as from a sun, while
the other source is diffuse, such as that characteristic of the sky and clouds.

We proceed by noting that the only information available to the viewer is the image intensities
1, Is from the two regions A and B. For simple Lambertian conditions, these image intensities will
be the product of the strength of illumination times the reflectances of the surface material. Let the
reflectance common to A and B be Rx where the subscript X indicates R is a function of wavelength,
and let S, be the incident flux from the direct light of the sun and D, the flux arising from the diffuse
light from the sky, both of which are also functions of wavelength as indicated by the subscript.' If a
region is neither highlighted nor shadowed, then the image intensity I will be given by

I - (Sx + A )RI (17a)

Equation (17a) thus describes the image intensity resulting from an unshadowed, matte surface.

5.2 The Highlight Case
4Note tdo for ibis nmal)ss we are ignoring other distinctive features of a highlight: 1) the textural apect of ecul rllty,
2) ts directional component which produces a disvar tty between the two eyes, and 3) that hilhblglhl edges are entvez
whereas dadow edges tend to be straight or concave.

5A planar surface is assunicd: the effct of sarlace orientation om the -A)ure illumination can be considered incorporated
into S, and/L&.
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SOURCES

VIEWER SURFACE

REGION A REGION B

* B I

1 2 1 2

WAVELENGTH

ftgure 3. Direct and diffuse light illuminate the surface. Is region A a highlight o is region 8 in shadow?
Pasible imale intensities over wavelength are illustrated in the lower pair of graphs

If region A is the same flat surface as region B, except that it has a highlight, then B remains
matte and I is dcfned by equation (17a). On the other hand, equation (17a) will not apply to
the highlighted region A. which acts like a partial mirror reflecting some fraction of the illninated
,cene lying away from the viewer. The reflectance Rk will thus depend in part upon what the viewer
%cc% in the reflection off A. In the case of the nomial highlight, the arrangement between the direct
.oircc illumination Sx. the surriace. ind the viewer is such that only the source light is rcflected ofl
the viewed qurface and hence Rx = I and A. =0 (fMr the highlight only). 'lbis contribution from the
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reflected light to the image intensity IA is at the expense of the matte component of surface reflectance
(Evans.1948; Horn.1977). Thus, if the highlight iontribution to the image intensity is the fraction IH.

then the matte contribution will be (I - fj). To characterize the image intensity IA corresponding to
a partial highlight on region A. we may thus reduce the matte equation (17a) by the factor (1 - fH)
and add to it the complementary fraction fh of specular light:

IAX = Ih&S + (I - fh)(-S, +I D)R), (17b)

where the first term on the R.H.S. is the specular component and the second term is the matte com-
ponent of the highlight. Note that only the illuminant & appears in the specular term becasue of the
directional properties of the reflections off a highlighted region!

5.3 The Shadow Case

If region B is the same surface as A. but B is in shadow, then region B will be illuminated only
by the diffuse light D,. The effect of shadowing is thus to reduce the illumination from (h4 + DK)
to Dk. Recognizing that shadows often have penumbrae, we may let Is be the fraction of the total

illumination that contributes to the shaded region. For shadow, therefore, equation (17a) may be
modified as follows:

19x = fs(& + DL)R) + (1 - fsAR)IT (1Sa)

which further simplifies to

lB, = V'sx + aD R), (18b)

For complete shade, fs = 0 and the image intensity 1B) arising from region B is described only by
the product of the diffuse light times the reflectance. For no shade, Is - 1; and for the penumbrae,

fs lies between 0 and 1.

5.4 Preliminary F4uation Counting

Equations (17b) and (18a) may be combined to obtain a single equation that describes the image

intensity for both the highlight and shadow conditions. This can be accomplished quite easily by
replacing the matte component in the highlight equation (17b) by the shadow relation of (17c). After
simplification, the resulting single equation will be

I.=-hs) + (I -,)(,s + Dh)I (19)

ONote that the equation dew'ribing the highlight condition is idmilar to that ucd for translarenc).
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where h ) sebcrpt indicates a wavelength dependency, and IH and Is are respectively the highlight
and dshdow fhudom

if&I. M. ., are now indexed to indicate the spatial region, we can apply the standard equation-
counting procedure to determine the minimum number of wavelength and spatial samples needed to
solve for the physical variables S., Rx. D, AH andfis in terms of the known lIx. and then attempt to
determine whether the solution for these physical variables implies a shadow or highlight.

Unfortunately. the equation-counting procedure is unsatisfactory in this case for two reasons. First,
the minimum number of spatial and spectral samples is biologically unfeasible (5 and 5 or 6 and 4.
respectively); second, and more important, the Jacobian collapses. The collapse is due to hidden
dependencies in the set of equations of the form (19).

5.5 Eliminating Dependencies

The most obvious strategy for eliminating dependencies among equations is to search for other
independent relations or constraints. Often, this may be difficult, and a more desirable course is to try
to reduce the number of unknowns by combining some of the physical variables whose solution is not
critical to the interpretation. For example, if the pairs SiR), and DR), occur together everywhere,
then we might consider replacing each pair by a single variable. Such a reduction would not affect the
ability to distinguish a shadow from a highlight. Each of these two procedures will now be illustrated.

5.6 Solving for the Highlights by Adding Constraints

To introduce additional independent constraining relations, we will consider the two-dimensional
case as shown in Figure 4 where a highlight (or shadow) runs across a change in reflectance R 1 R2.
The highlight boundary is parallel to ihe Y axis; the reflectance change is parallel to the X axis. For
this two-dimensional case, equation (19) will assume the following form:

Ixy - xLyx, + (I - fx)Myx 120)

where 'xyN, is the image intensity corresponding to one of the regions A 1, BI, C or A2, BI , C2. Note
that since only two wavelength variables L- and MN are involved along the X axis, these variales
need to be indexed by Y only.

By simple equation-counting, it can be verified that the minimum number of samples along X or Y
and for X will be respectively either 3,1.3 or 3,3,1. (Note that Y and X appear together and hence can
be symmetrically indexed). A further reduction can be obtained by noting that region CI or C1. etc:. is
always matte, and hence .(or f,-..) is 7cro. 11tus I.'x "- Aflv,. The minimum fi)r X, Y. X is then
3. 1. 2 or 3. 2. 1. which correspnd to a set ofrsix equatiu % in six unkntwns. The dce'iininami of the
Jacobian of either system of equations is still zero. however.
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...... C

LIT GRADIENT MATTE x

Figre 4. View of a srface with a shadow or hightlight boundary parallel to the Y axis and crossing a
regionl of two different reflectances, R1 and R2.

To solve the equations, we need to introduce one more constraint or reduce the number of vari-
ables. For highlights, an additional constraint can be added by noting that thc spectral composition
of thc purely specular component is independent of the underlying reflectance RI, R2 . Thus along Y,
Lj, = Lp,. The minimum X, Y, X~ samples arc now X = 2, X = 1, Y = 2 (thc symmetry between
Y and X has been removed by the spevularity constraint), leading to the following equations:

JBI =IBLI + (1-B)MI

1c, =fcLj+ (I -fc)M (21)

AC2 -k12 + (I -M

frmO L L



WAR, JMR & Oaw 18 EQUATION COUNTING

where the indexing is for Y only, since there is only a single wavelength sample.

The Jacobian of the reduced set of the abovi equations obtained by substituting LI =L 2 and
A - 0 is:

L-M 1  o (--) 0

LI-M2 h 0 0l- f)1 3 ( M )f(M2--M)
o 0 1 0
0 0 0 1

which is non-singular provided Mi 6 M and jh 3 0.

Thus solutions can be obtained for hD. M, M2 and particularly LI, the specular component of the
light reflected off the surtce.

Luoiectiar = IB21~JCI - 1IC2 (22a)
- IC2) - (I• - IM)

I -fB I - 18a2 (22b)ICI - AC

5.7 Solving for Shadows by Combining Variables

Returning to Figure 4, we may now reinterpret the regions A1, A2, BI, B2 in terms of a shadow
edge parallel to the Y-axis. (A penumbra will be needed for this constraint implying that the mini-
mum spatial samples along X is three although only two will be used as in the highlight case.)

For shadows, the equation (19) then has the same form as the first four equations (21), with Li
(A. + DjRj and M = DA., where S andD are respectively the source and diffuse light and R is the
reflectance. Since for shadows LI 7 L2 (i.e., there is no spectral component superimposed on A, A 2 ,
or B, A2 ), an additional constraining equation must replace this specular constraint. For illustration,
we will introduce a "gray world" condition, namely that the average of all surfaces reflccting the
source light is spectrally flat. Hence the diffuse light D, is simpiy some fraction -y of the source light:

Di - "),Sj (23a)

and

L 1=-- 1 + )(23b)

Li m(+y)5i (23c)
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Because S and R appear together in two of the above equations, they cannot be solved for
separately, and the Jacobian test will fail when applied to equations (23). To eliminate this depend-
ency, define a new variable S* -- S R. The shadow equations then become:

1111 --fB(1 + )sI*+ (1 -BhSi = (k + -)Si

IM = f(I + )S; + (I- fBS - (kB + 1)s;

AB2 l +_1)S fB-Y_ 1 9 IS

/el = 3l*(= MI)

2 = 31S (= M) (24)

with the four unknowns being &,y, SIS, S2*.

Unfortunately, the determinant of the Jacobian of this set of equations is still zero, suggesting that
dependencies are still present:

(fa + 7) 0 S; s;
o V( + _) s; s;
t o. o S
0 1 0 S2[

Rather than introducing a new constraint, we will proceed to determine whether any of the physical
variables can be combined to reduce further thf number of unkhowns. The most obvious choices are
ratios or products of the entries in the Jacobian array, These terms are the coefficients of the variables
in the original set of equations, and consequently are the factors that would be used to multiply two
of the equations to eliminate one variable. (In essense, we are exploring various triangular forms of
the matrix of rank one less than the original.) The appropriate ratios are thus those between the rows
in the same columns, because it is these factors that will be cross multiplied to eliminate the variable
that is identified with that column of the Jacobian matrix. Thus the appropriate ratios of the above
Jacobian that should be explored first are (In - y)/,y, which appear in columns I and 2, and S;IS;,
which appear in columns 3 and 4. Inspection of equations (24) shows th.at the solution for these
reduced variables is quite simple

S; '02 'C2 SR(

"f"'1 _ IL L2 (26b)y IC I IC2

The extra solution for each paired variable now rccal% the dependency between the image ien-
sities that caused the rank reduction of the Jacobian of(24), namely the relation
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181JC2- 1CIAB2 (26c)

which is common to both (26a) and (26b). If the grey world condition applies and if C(Y) is a shadow
on B(X), then the shadow relation (26c) will be true.

Unfortunately, there arc an unlimited number of image intensity values that will satisfy the
"shadow" relation (26c). How are we to be sure that they all correspond to the shadow condition and
not to a reflectance change or even a highlight? To answer this question, we proceed in two stages, first
to show that the shadow solution (26) never will correspond to a highlight, and hence shadows and
highlights are at least disambiguated because their solutions are distinct. Then, we will illustrate how
the probability of other confounding spectral relations such as different materials can be set arbitrarily
low by independent corroboration of the original solution.

6. Distinctness of S and H Solutions
(Exclusion of Competing Interpretations)

Our basic procedure to prove distinctness of the shadow S and highlight H solutions will be to
show that there is at least one relation between the four available image intensities (Ia B2, Ic1, IC2)
that has different values for the shadow and highlight conditions. These values will always be different
(if the constraints are valid) because the relation corresponds to two different physical variables (one
for shadow, the other for highlights) that have non-overlapping values.

To proceed, we ask first what highlight conditions satisfy the shadow solution (26). (Subsequently,
we will examine the opposite case-asking what shadow conditions will "look like" highlights.)7 We
thus assume relation (26) holds and solve for one of the highlight conditions. Consider equation
(2p'i) that specifics the magnitude of the specular components of the highlight. Note the numerator
is identical to the 4ihadow equation (26) if the left hand side (L.H.S.) of (26) is subtracted from the
R.H.S. In this case, however, the numerator (22a) will be zero. Hence the shadow condition requires
that Lapcuj., = 0 and consequently there can be no highlight interpretation. Thus, given that the
shadow condition (26) holds, there will be no highlight interpretation.

To check for the reverse case, namely under what conditions the image intensity relations for the
highlight condition will also yield a shadow interpretation, we may examine the second highlight
equation (22b). In particular, we wish to solve for the physical interpretation of the intensity relations
of (22b) given a shadow condition. This can be accomplished simply by substituting equations (24)
into the R.H.S. of(22b). We find that, given the shadow conditions, then

In- - + -Y = . + 1 (27)
lc,-- I - c,2 ly -7

Figure 5 now plots the possible values of the image intensity ratio given by the 1.1 IS of (27) for
shadows and the R! IS of(22b) for highlights.

':or another example treatment. ic UlIman's (I979) analysis of falke-tarel, for his stueture-from-motion thcotem '

KIM,
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H S

O (I-f) I It4

Filpre 5. Solution apae for shadow S and highlight H conditimOs

We note that both f (the fraction of specularity or shadow) and -Y (the fraction of direct light),
range between 0 and 1. Hence for highlights, I - f must lie between 0 and 1, whereas for shadows
I + fl-y will be greater than or equal to 1. The only common condition is when f = 0, which
corresponds to a homogeneous matte area. Thus, highlights and shadows will never be confused from
the image intensities (provided the gray world assumption applies), if the calculation given by the
L.H.S. of (27) is made. It is of some interest that this operation on image intensities is equivalent to
examining the output of the double-opponent color cell found in most biological color vision systems
(see Rubin and Richards, 1981).

6.1 Corroboration

Although the highlight H and shadow S solutions are unique and distinct, it is still possible that
other properties of surfaces, such as pigment density changes or changes in reflectances could satisfy
equations (22) or (25) and be misinterpreted as either a highlight H, or shadow S. Thus a shadow
or highlight interpretation should not yet be given to the solutions H and S. To exclude all other pos-
sibilitics is difficult (see Rubin and Richards, 1981, however). Nevertheless, the odds for an incorrect
H or S interpretation can be reduced by applying an independent test for the validity of the shadow or
highlight equations. We call such a procedure "corroboration".

One simple independent corroborative test is to note whether the equation counting procedure
suggested more than one minimal condition for solution. In particular, we noted in section 5.5 that
the equation (20) had a symmetry in wavelength (X,) and space (Y). We chose as a starting point one
spectral sample and two samples in the Y dimension. An independent test would therefore be to use
two spectral samples rather than one, and only one sample in the Y dimension. This case corresponds
to examining the gradients of a highlight, or the penumbra of a shadow.

A second and more common type of corroborating procedure is to simply take another set of
nicasIuremeIns intdepcndcn of the firsL and dclrnine whcther the solutions for dic physical constants
remain the same or not. If they do not, then the interpretation must he rcje'tcd. If they arc confinned.

........Ii 1 ... I. ......." i l H .. ....: ' ' -* ....' " ' ' ' ' i ' ....
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then the odds on a misinterpretation are reduced. Ideally, the corroboration should be based upon
measurements taken from a physical dimension different from that used in the original solution. In
any case, since we are corroborating the value of a physical parameter, the corroborating measure-
ments must not be confounded with the dimensions of that physical parameter. In this respect, the
relation (27) that tests for the highlight or shadow condition is most satisfactory, for the values fB and
,y are dimensionless and are not functions of wavelength, for example. For the shadow condition,
we thus can take a third spectral sample I83, /C3 and substitute these image intensities for /B2, 1C2.
Since the physical constant (1B + -y)/'y of equation (25b) is not a function of wavelength, this value
should remain unchanged if the image intensity changes are indeed due to a shadow. In effect, we
are confirming that the S solution point remains fixed along the solution ray illustrated in Fig. 5. If it
does, then the shadow (or highlight) interpretation is reaffirmed and the chance of misinterpretation
is unlikely provided that the competing interpretations are not processes that behave like shadows.
Consequently, at least three wavelength samples are required before a reliable shadow interpretation
can be made.

In the case of recovering structure from motion-our earlier example-the corroboration of the axis
of rotation could entail adding additional frames or snapshots to see if the same axis and rod length
is recovered. Clearly, this procedure is not entirely independent because the strategy for solution
remains the same and some possible confounding interpretations may not be excluded (e.g., the
correct interpretation that the points are on a TV monitor in 2-D).

A more independent corroborative test would be to use stereopsis, for this computation of the
depth relations between the feature points is quite different from the structure-from-motion analysis.
This ideal corroborative procedure should thus use an entirely different computational analysis, which
is based upon relations that have quite different failure conditions8

7. Summary

Although the equation-counting procedure has been used in the past to give some insight into the
complexity required to solve problems in many non-linear variables (e.g., Leith el al, 1981), research-
ers in perception have often neglected to recognize that certain other conditions must be fullfilled
before a meaningful solution can be guaranteed (Mciri, 1980). These conditions are summarized in
the flow diagram of Fig. 6. They include the Jacobian test for the independence of the system of equa-
tions, uniqueness of solution, exclusions of competing interpretions, and two kinds of corroboration.
If these conditions can be met, then the equation counting procedure provides a powerful theoretical
tool for understanding how, in principle, biological systems can make reliable interpretations and
assertions from the greatly impoverished sense data available to them.

FI:or biologicul sysems. we probabiy should view "corroboration" as an early qcp in the perceptual process (periaps
at the level of Mart's 2-1/21) sketch) that acts on the output of modtrias oatl./iy#i infwmii,im d rm cd ftinit mao Mii.
diiparit). color, texture. etc., s %cNll a% non-vital information, .uch as tactile rnitihncvi. shnal tr even in smic cmc.
acoustic infonration.
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Appendix 1: Redundancy

Unfortunately, due to measurement and sampling errors, real-world data are not precise. The
hardware performing the calculations may also be quite noisy, as is the case for many neural net-
works. Without exact data and calculations, solution vectors will not be completely isolated, but
rather are more properly represented as a probability distribution about the exact solution point. To
reduce the likelihood of misinterpretation, several overconstraining equations are often helpful. (By
"overconstraining" we here mean the inclusion of equations in addition to those needed to obtain a
unique solution.) Their value will depend in part upon how many variables (unknowns) are included
in the solution point. Intuitively, the more the unknowns, the greater the potential noise and the less
the contribution of any one overconstraining equation will be. To capture this property, we suggest
the following measure of the redundancy of a system containing overconstraining equations:

Redundancy = I - 1I - I]¢ (Al)

where C is the number of independent combinations of the equations and U is the number of un-
knowns. As U increases, this measure decreases to zero. The effect of the additional overconstraining
equations, on the other hand, is to reduce the deleterious effect of increasing U in a manner analogous
to probability summation, yet the redundancy measure will never exceed 1 (the ideal). The redun-
dancy measure has the practical value of providing an estimate of how many extra equations (or data
samples) are needed to isolate a solution point to a certain probability, given known measurement
signal to noise ratios.

Appendix I!: Sard's'Tbeorem ror non-Polynomial Functions

In many cases, the equations relating the unknown variables will not be polynomial and Bezout's
Theorem will not apply. These exceptions include such common functions as exponentials, logarith-
mic, or trigonometric. Sometimes, a change of variables can be made to recast the non-polynomial
relations in polynomial form. If this is done, then care must be taken to restrict the range over which
the polynomial form applies.

More generally. if a function is smooth on a manifold, then Sard's Theorem can be used (Guillcmin
and Pollack, 1974: Milnor,1978). Suppose that the following system of independent equations holds:

A (XI, X,) -P

'Ibis system can then be represented more generally as a mapping from Rk to R":
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FCOUNRI

or

F(l, ... zk) = .. ( ,. ....)}

By Sard's Theorem, we know that if F is a smooth mapping and if F is invertable for the values p,
then the dimension of F-(p) is (k - n). Since when k = n the dimension ofF-I(p) is zero, there
can be at most a countable number of (isolated) solutions.

Some care must be taken in assuming that Sard's Theorem applies to any differentiable function.
It does not. For example, consider the simple periodic function ain z. Such a function is uniquely
invertable only over a specified range. Polynomial functions are thus a "safer" class of functions to use
for equation counting, for their appropriate range is usually more obvious.
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